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Abstract 30 

 

Nitrous oxide (N2O) and methane (CH4) are atmospheric trace gases which play important roles of the 

climate and atmospheric chemistry of the Earth. However, little is known about their emissions from 

rivers and estuaries which seem to contribute significantly to the atmospheric budget of both gases. To 

this end concentrations of N2O and CH4 were measured in the Rajang, Maludam, Sebuyau and 35 

Simunjan Rivers draining peatland in northwestern (NW) Borneo during two campaigns in March and 

September 2017. The Rajang River was additionally sampled in August 2016 and the Samusam and 

Sematan Rivers were additionally sampled in March 2017. The Maludam, Sebuyau, and Simunjan 

Rivers are typical ‘blackwater’ rivers with very low pH, very high dissolved organic carbon (DOC) 

concentrations and very low O2 concentrations. The spatial and temporal variability of N2O and CH4 40 

concentrations (saturations) in the six rivers/estuaries was large and ranged from 2.0 nmol L
-1

 (28 %) 

to 41.4 nmol L
-1

 (570 %) and from 2.5 nmol L
-1 

(106 %) to 1372 nmol L
-1

 (57,459 %), respectively. 

We found no overall trends of N2O with O2 or NO3
-
, NO2

-
, NH4

+
 and there were no trends of CH4 with 

O2 or dissolved nutrients or DOC. N2O concentrations showed a positive linear correlation with 

rainfall. We conclude, therefore, that rainfall is the main factor determining the riverine N2O 45 

concentrations since N2O production/consumption in the ‘blackwater’ rivers themselves seems to be 

unlikely because of the low pH. In contrast CH4 concentrations showed an inverse relationship with 

rainfall. CH4 concentrations were highest at salinity = 0 and most probably result from 

methanogenesis as part of the decomposition of organic matter under anoxic conditions. We speculate 

that CH4 oxidation, which can be high when the water discharge is high (e.g. after rainfall events), is 50 

responsible for the decrease of the CH4 concentrations along the salinity gradients. The rivers and 

estuaries studied here were an overall net source of N2O and CH4 to the atmosphere. The total annual 

N2O and CH4 emissions were 1.09 Gg N2O yr
-1

 (0.7 Gg N yr
-1

) and 23.8 Gg CH4 yr
-1

, respectively. 

This represents about 0.3 – 0.7 % of the global annual riverine and estuarine N2O emissions and about 

0.1 – 1 % of the global riverine and estuarine CH4 emissions. Therefore, we conclude that rivers and 55 

estuaries in NW Borneo –despite the fact their water area covers only 0.05 % of the global 

river/estuarine area– contribute significantly to global riverine and estuarine emissions of N2O and 

CH4. 

 

  60 
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1. Introduction 

 

Nitrous oxide (N2O) and methane (CH4) are atmospheric trace gases which influence the climate and 

atmospheric chemistry of the Earth (IPCC, 2013; WMO, 2014). They act as greenhouse gases in the 

troposphere and are indirectly involved in stratospheric ozone depletion. Emission estimates indicate 65 

that rivers and estuaries contribute significantly to the atmospheric budget of both N2O and CH4. N2O 

emissions estimate for rivers and estuaries range from 0.05 to 3.3 Tg N2O yr
-1

 and from 0.09 to 5.7 Tg 

N2O yr
-1

, respectively (see overview in (Maavara et al., 2019). Thus, the combined riverine and 

estuarine emissions may contribute up to 32 % to the global natural and anthropogenic emissions of 

N2O (28.1 Tg N2O yr
-1

; IPCC, 2013). CH4 emission estimates for rivers and estuaries are in the range 70 

of 1.5 – 26.8 Tg CH4 yr
-1

 (Bastviken et al., 2011; Stanley et al., 2016) and 0.8 – 6.6 Tg CH4 yr
-1

 (see 

overview in (Borges and Abril, 2011)), respectively. The combined emissions from rivers and 

estuaries can contribute up to 6% of the global natural and anthropogenic atmospheric emissions of 

CH4 (556 Tg CH4 yr
-1

; (IPCC, 2013)). As indicated by the wide range of the estimates cited above, the 

emission estimates of both gases are associated with a high degree of uncertainty, which is mainly 75 

caused by an inadequate coverage of the temporal and spatial distributions of N2O and CH4 in rivers 

and estuaries and the inherent errors of the model approaches to estimate their release across the 

water/atmosphere interface (see e.g. (Alin et al., 2011; Borges and Abril, 2011)). 

 

N2O is produced by microbial processes such as nitrification (i.e. oxidation of ammonia, NH3, to 80 

nitrite, NO2
-
) in estuarine waters (see e.g. (Barnes and Upstill-Goddard, 2011)) and heterotrophic 

denitrification (i.e. reduction of nitrate, NO3
-
, to dinitrogen, N2) in river sediments (Beaulieu et al., 

2011). The yields of N2O from these processes are enhanced under low oxygen (i.e. suboxic) 

conditions (see e.g. (Brase et al., 2017; Zhang et al., 2010)), whereas N2O can be reduced to N2 under 

anoxic conditions via sedimentary denitrification in rivers (see e.g. (Upstill-Goddard et al., 2017)). 85 

Apart from ambient oxygen (O2) concentrations, riverine and estuarine N2O production is also 

dependent on the concentrations of dissolved inorganic nitrogen, DIN (= NH4
+
 + NO2- + NO3

-
). There 

seems to be a general trend towards high estuarine N2O concentrations when DIN concentrations are 

high as well (Barnes and Upstill-Goddard, 2011; Zhang et al., 2010). However, this trend masks the 

fact that in many cases the spatial and temporal variability of riverine and estuarine N2O is often not 90 

related to DIN (see e.g. (Borges et al., 2015; Brase et al., 2017; Müller et al., 2016a)). 

 

CH4 is produced during microbial respiration of organic matter by anaerobic methanogenesis in 

riverine and estuarine sediments (see e.g. (Borges and Abril, 2011; Romeijn et al., 2019; Stanley et al., 

2016)). A significant fraction of the CH4 produced in sediments can be oxidized to carbon dioxide 95 

(CO2) via anaerobic CH4 oxidation in sulphate-reducing zones of estuarine sediments (see e.g. (Maltby 

et al., 2018)). When released to the overlying riverine/estuarine water CH4 can be oxidized by aerobic 
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CH4 oxidation before reaching the atmosphere (see e.g. (Borges and Abril, 2011; Sawakuchi et al., 

2016; Steinle et al., 2017)). 

 100 

In general, the temporal and spatial distributions of N2O and CH4 in rivers and estuaries are driven by 

the complex interplay of microbial production and consumption pathways (see above) as well as 

physical processes such as input via shallow groundwater, river discharge, tidal pumping, release to 

the atmosphere and export to coastal waters (Barnes and Upstill-Goddard, 2011; Borges and Abril, 

2011; Stanley et al., 2016).  105 

 

Peatlands, which are found in the tropics and at high latitudes, constitute one of the largest reservoirs 

of organic-bound carbon worldwide (Page et al., 2011; Treat et al., 2019; Yu et al., 2010). Rivers and 

streams draining peatlands have exceptionally high concentrations of dissolved organic carbon (DOC) 

and low pH and, thus, belong to the ‘blackwater’ river type which is also found in southeast (SE) Asia 110 

(Alkhatib et al., 2007; Baum et al., 2007; Martin et al., 2018; Moore et al., 2011; Rixen et al., 2008; 

Wit et al., 2015).. 

 

Despite the fact that a number of studies about N2O and CH4 emissions from peatlands in southeast 

(SE) Asia have been published (see e.g. (Couwenberg et al., 2010; Hatano et al., 2016; Jauhiainen et 115 

al., 2012), only a few studies about their emissions from peatland draining rivers in SE Asia have been 

published so far (Jauhiainen and Silvennoinen, 2012; Müller et al., 2016a). Therefore, our knowledge 

about the biogeochemistry and emissions of N2O and CH4 from peatland draining rivers is still 

rudimentary at best. 

 120 

Here we present measurements of dissolved N2O and CH4 in six rivers and their estuaries in 

northwestern (NW) Borneo during August 2016, March 2017 and September 2017. The objectives of 

our study were (i) to measure the distributions of dissolved N2O and CH4, (ii) to identify the major 

factors influencing their distributions and (iii) to estimate the N2O and CH4 emissions to the 

atmosphere. 125 

 

2. Study site description 

 

Discrete samples of surface water were taken at several stations along the salinity gradients of the 

Rajang, Maludam, Sebuyau and Simunjan Rivers in NW Borneo during two campaigns in March and 130 

September 2017 (Figure 1, Table 1). The Rajang River was additionally sampled in August 2016 and 

the Samusam and Sematan Rivers were additionally sampled in March 2017. The environmental 

settings of the river basins are summarized in Table 2. Based on the areas affected by oil palm 

plantations and logging in combination with our own observations during several samplings 
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campaigns, we classified the Rajang and Simunjan river basins as ‘disturbed’, the Maludam, Sebuyau, 135 

Sematan and Samusam river basins as ‘undisturbed’ (Table 2). 

 

 

3. Methods 

 140 

3.1 Measurements of N2O and CH4 

Discrete water samples were taken as duplicates or triplicates in 20 or 37 mL glass vials from a water 

depth of approximately 1 m. The samples were poisoned immediately after sampling with a saturated 

aqueous mercuric chloride (HgCl2) solution. The samples were shipped to GEOMAR Helmholtz 

Centre for Ocean Research Kiel, Germany, for further analysis within a few weeks after sampling. For 145 

the determination of the N2O and CH4 concentrations we applied the static-headspace equilibration 

method followed by gas chromatographic separation and detection with an electron capture detector 

(ECD, for N2O) and a flame ionization detector (FID, for CH4) as described in (Bastian, 2017) and 

(Kallert, 2017). Calibration of the ECD and FID were performed with standard gas mixtures of N2O 

and CH4 in synthetic air which have been calibrated against NOAA-certified primary gas standards.  150 

 

Dissolved N2O/CH4 concentrations (Cobs in nmol L
−1

) were calculated with 

 

Cobs = x’PVhs / (RTVwp) + x’P     (1), 

 155 

where x’ is the dry mole fraction of N2O or CH4 in the headspace of the sample, P is the ambient 

pressure (set to 1013.25 hPa), Vhs and Vwp are the volumes of the headspace and the water phase, 

respectively. R stands for the gas constant (8.31451 m
3
 Pa K

−1
 mol

−1
), T is the temperature during 

equilibration and  is the solubility of N2O or CH4 (Weiss and Price, 1980; Wiesenburg and Guinasso 

Jr., 1979). The estimated mean relative errors of the measurements were +/- 9 % and +/- 13 % for N2O 160 

and CH4, respectively. These comparably high relative errors most probably resulted from the long 

storage time for some of the samples. It was shown that CH4 samples are more sensitive to storage 

time than N2O samples (Wilson et al., 2018). 

 

3.2 Ancillary measurements 165 

Water temperature, dissolved oxygen, and salinity were recorded with an Aquaread
®
 2000. Nutrient 

measurements are described in detail in (Sia et al., 2019). In short, all samples were collected within 

the upper 1 m (surface) using pre-washed bottles via a pole-sampler to reduce contamination from the 

surface of the boat and engine coolant waters (Zhang et al., 2015). Samples were filtered through a 0.4 

μm pore-size polycarbonate membrane filters (Whatman) into pre-rinsed bottles, killed with 170 

concentrated HgCl2 solution and kept in a cool, dark room. Nutrients were determined utilizing a 
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Skalar SANplus auto analyser with an analytical precision <5%. The measurements of dissolved 

organic carbon (DOC) are described in detail in (Martin et al., 2018). The DOC data are available 

from the supplementary material in (Martin et al., 2018). 

 175 

3.3 Computations of saturations and flux densities 

The saturations (Sat, %) for N2O, CH4 and O2 were calculated as 

 

Sat = 100 Cobs / Ceq       (2) 

 180 

where Ceq is the equilibrium concentration of N2O/CH4/O2 calculated according to (Weiss and Price, 

1980), (Wiesenburg and Guinasso Jr., 1979) or (Weiss, 1970), respectively, with the in-situ 

temperature and salinity as well as the mean dry mole fractions of N2O/CH4 at the time of the 

sampling. Mean monthly N2O/CH4 dry mole fractions of 329/1841 10
-9

 (ppb), 331/1880 ppb and 

330/1852 ppb for August 2016, March 2017 and September 2017, respectively, were measured at the 185 

atmospheric monitoring station Bukit Kototabang, located on the west coast of Sumatra (Indonesia). 

This station is operated by the NOAA/ESRL Global Monitoring Division program and data are 

available from http://www.esrl.noaa.gov/gmd. A saturation < 100 % indicates a concentration lower 

than the theoretical equilibrium concentration (i.e. undersaturation) and a saturation > 100 % indicates 

supersaturation. 190 

 

Flux densities (F, nmol·m
-2

·s
-1

) were calculated as 

 

F = kw (Cobs – Ceq)      (3) 

kw = k600 (Sc/600)
-0.5

      (4) 195 

 

kw is the gas transfer velocity and Sc is the Schmidt number, which was calculated with the equations 

for the kinematic viscosity of water (Siedler and Peters, 1986) and the diffusion of N2O or CH4 in 

water (Jähne et al., 1987; Rhee et al., 2009). k600 was determined in a seasonal study for the Lupur and 

Saribas Rivers which are located in close vicinity to the Maludam River (Müller et al., 2016a; Müller 200 

et al., 2016b). We assume that the k600 values measured by (Müller et al., 2016a)are representative for 

the rivers in NW Borneo studied here. Mean k600 range from 13.2 cm h
-1

 (Lupur River) to 23.9 cm h
-1

 

(Saribas River tributary). On the basis of the data in (Müller et al., 2016a) we computed a mean k600 of 

19.2 cm h
-1

 (5.33 10
-5

 m s
-1

) which we used to estimate the flux densities of N2O and CH4. This k600 is 

in good agreement with the mean k600 for rivers and estuaries listed in (Alin et al., 2011) which range 205 

from 4.8 to 35.3 cm h
-1

. 

 

3.4 Rainfall data 
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In order to account for the regional variability of the rainfall in NW Borneo, we used mean monthly 

rainfall data recorded at the weather stations in Kuching, Bandar Sri Aman and Sibu (all in NW 210 

Borneo). The rainfall data were provided by World Weather Online (Dubai, UAE, and Manchester, 

UK) and are available via https://www.worldweatheronline.com/. Representative weather stations 

were chosen for each river basin studied here and allocated as follows: The rainfall data for the 

Simunjan, Sematan and Samsuman River basins are represented by the data from Kuching, the 

Maludam/Sebuyau and the Rajang River basins are represented by the data from the Bandar Sri Aman 215 

and Sibu weather stations, respectively. 

 

4 Results and Discussion 

 

All rivers showed low concentrations of DIN in the range from 1.1 to 29 µmol L
-1

 (Table 1). NO3
-
 220 

concentrations ranged from below the detection limit of 0.14 µmol L
-1

 up to 19 µmol L
-1

 and NH4
+
 

concentrations were in the range of 0.3 to 17 µmol L
-1

. The Maludam, Sebuyau, and Simunjan Rivers 

can be classified as ‘blackwater’ rivers with low pH (3.7 – 4.8), high DOC concentrations (1960 – 

4387 µmol L
-1

) and low O2 concentrations (31 – 95 µmol L
-1

; 13 – 39 % saturation) at salinity = 0 

(Table 1). Comparable settings have been reported from other tropical ‘blackwater’ rivers in SE Asia 225 

as well (Alkhatib et al., 2007; Baum et al., 2007; Moore et al., 2011; Rixen et al., 2008; Wit et al., 

2015).  

 

4.1 Nitrous oxide 

The measured ranges of N2O concentrations and saturations are listed in Table 3 and the distributions 230 

of N2O saturations along the salinity gradients are shown in Figure 2. N2O concentrations (saturations) 

were highly variable and ranged from 2.0 nmol L
-1 

(28 %) in the Rajang River (at salinity = 0 in 

August 2016) to 41.4 nmol L
-1

 (570 %) in the Simunjan River (at salinity = 0 in March 2017). N2O 

concentrations in the Rajang, Maludam and Sebuyau Rivers were generally higher in September 2017 

compared to March 2017 (Figure 2a-c). A decreasing linear trend of the N2O saturations with salinity 235 

was only observed for the Rajang River in March 2017 (Figure 2a) indicating a conservative mixing 

and no N2O sources or sinks along the salinity gradient. Our results are in general agreement with the 

N2O measurements in the Lupar and Saribas Rivers (which are located in close vicinity of the 

Maludam River) in June 2013 and March 2014: Müller et al. (2016) measured N2O concentrations 

(saturations) from 6.6 to 117 nmol L
-1

 (102 to 1679 %) in the Lupar and Saribas Rivers. Salinity and 240 

N2O concentrations in the Lupar and Saribas Rivers were negatively correlated in June 2013 but were 

not correlated in March 2014 (Müller et al., 2016a). In contrast to our study, no N2O undersaturations 

have been observed by (Müller et al., 2016a). Our results are at the lower end of N2O concentrations 

reported from rivers around the globe which can range from extreme undersaturation (down to about 3 

%, i.e. almost devoid of N2O) as measured in a tropical river in Africa (Borges et al., 2015; Upstill-245 
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Goddard et al., 2017) to extreme supersaturation (of up to 6500%) as measured in a river in Europe 

((Barnes and Upstill-Goddard, 2011). 

 

Maximum N2O saturations measured in March 2017 were in the range from 106 % to 142 % for the 

rivers classified as undisturbed (Maludam, Sebuyau, Sematan and Samusam) whereas the maximum 250 

saturation for the rivers classified as disturbed (Rajang and Simunjan) were in the range from 329 % to 

570 % (Tables 2 and 3) indicating higher emissions from the disturbed rivers. The maximum N2O 

saturations in September 2017 ranged from 329 % to 390 % and no differences were observed 

between undisturbed and disturbed rivers (Table 3).  

 255 

We found no overall trends of N2O with O2 or NO3
-
, NO2

-
, NH4

+
 and DIN. Therefore, it is difficult to 

decipher the major consumption or production processes of N2O or to locate the influence of (local) 

anthropogenic input of nitrogen compounds on riverine N2O cycling. This is in line with results from 

studies of other tropical rivers (Borges et al., 2015; Müller et al., 2016a). N2O production via 

nitrification depends on the prevailing pH because nitrifiers prefer to take up ammonia (NH3). The 260 

concentration of dissolved NH3 is dropping significantly at pH < 8-9 (Bange, 2008) because of its easy 

protonation to ammonium (NH4
+
). A low pH of about 5-6 can reduce nitrification (NH4

+
 oxidation) 

significantly as it was recently shown for the Tay Ninh River in Vietnam (Le et al., 2019). Moreover, 

the optimum for a net N2O production by nitrification, nitrifier-denitrification and denitrification lies 

between a pH of 7 – 7.5 (Blum et al., 2018). Therefore, a net N2O production may be unlikely in the 265 

‘blackwater’ rivers studied here with their low pH (see Table 1). The observed N2O supersaturations, 

therefore, might have been the result of external inputs of N2O-enriched waters or groundwater. The 

observed N2O undersaturations were most probably resulting from heterotrophic denitrification which 

could have taken place either in organic matter-enriched anoxic river sediments or in anoxic 

environments of the surrounding soils. However, the main factor for riverine N2O under- or 270 

supersaturation might be rainfall, because rainfall events determine the height of the water table in the 

surrounding soils, which in turn determines the amount of suboxic/anoxic conditions favourable for 

N2O production or consumption. See also discussion in Section 4.3. 

 

4.2 Methane 275 

The measured ranges of CH4 concentrations and saturations are listed in Table 3 and the distributions 

of CH4 saturations along the salinity gradients are shown in Figure 3. CH4 concentrations (saturations) 

were highly variable and ranged from 2.5 nmol L
-1 

(106 %) in the Simunjan River (at salinity = 0 in 

September 2017) to 1372 nmol L
-1

 (57,459 %) in the Simunjan River (at salinity = 0 in March 2017). 

(Please note that we also measured a CH4 concentration of 14,999 nmol L
-1

 (624,070 %) at one station 280 

in the Simunjan River at salinity = 0 in March 2017 which, however, was not included in Figure 3 and 

which was not used in further computations because of statistical reasons.) CH4 saturations in the 
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Rajang, Maludam, Sebuyau and Simunjan Rivers were higher in March 2017 compared to September 

2017. Maximum CH4 concentrations were measured at salinity = 0 and there was a general decrease of 

CH4 with increasing salinity. Exceptions from this trend occurred at individual stations in the 285 

Maludam, Sebuyau and Samusam Rivers which point to local sources of CH4 (Figure 3). The range of 

CH4 concentrations (saturations) from our study is larger compared to the concentration range 

measured in the Lupar and Saribas Rivers (3.7 – 113.9 nmol L
-1

; 168 – 5058 %) ((Müller et al., 

2016a). (Borges et al., 2015) reported a maximum CH4 concentration (saturation) of 62,966 nmol L
-1

 

(appr. 954,000 %) in their study of tropical rivers in Africa which is much higher than the maximum 290 

concentration measured in our study. (Bouillon et al., 2014) 

 

We found no overall trends of CH4 with O2 or dissolved nutrients or DOC along the salinity gradients. 

High CH4 concentrations, which were often associated with high DOC and low O2 concentrations at 

salinity = 0, might have been produced by methanogenesis in anoxic riverine sediments rich in organic 295 

material or in anoxic parts of the surrounding soils drained by the rivers. The decrease of CH4 with 

increasing salinity can be attributed to the gas exchange across the river water/atmosphere interface in 

combination with CH4 oxidation (Borges and Abril, 2011; Sawakuchi et al., 2016). 

 

We found no differences in the CH4 saturations between the rivers classified as undisturbed and those 300 

classified as disturbed in both March and September 2017.  

 

4.3 N2O/CH4 concentrations and rainfall 

Mean N2O concentrations showed a linear correlation with rain fall (Figure 4a). Enhanced N2O 

emissions from (peat) soils are usually associated with rainfall when the water table approaches the 305 

soil surface (Couwenberg et al., 2010; Jauhiainen et al., 2016). A high water table, in turn, allows 

decomposition of previously deposited fresh organic material (Jauhiainen et al., 2016) and, thus, will 

result in favourable conditions for microbial N2O production mainly via denitrification in a 

suboxic/anoxic soil environment (Pihlatie et al., 2004). N2O production via nitrification may be less 

important at high water table (Pihlatie et al., 2004). Therefore, the positive linear relationship of the 310 

riverine N2O concentrations with rainfall might result from enhanced N2O production in the adjacent 

soils drained by the rivers.  

 

In contrast to N2O, the mean CH4 concentrations decrease with increasing rainfall (Figure 4b). Under 

the assumption that rainfall is a predictor for river discharge/high water we can argue that our result 315 

are in agreement with (i) the often observed inverse relationship between CH4 concentrations and river 

discharge (Anthony et al., 2012; Bouillon et al., 2014; Dinsmore et al., 2013; Hope et al., 2001) and 

(ii) the enhancement of CH4 oxidation during high waters: (Sawakuchi et al., 2016) showed that CH4 

oxidation in ‘blackwater’ rivers of the Amazon basin was maximal during the high water season 
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resulting in a reduction of up to 96% of the diffusive flux of CH4 (i.e. its input to the river and its 320 

release to the atmosphere) (Sawakuchi et al., 2016). This was explained by the higher river water 

levels which, in turn, could enhance CH4 oxidation because of a longer residence time of CH4 in the 

sediment and river water (Sawakuchi et al., 2016). 

 

4.4 Emission estimates 325 

The N2O flux densities from the six rivers studied here are comparable to the N2O flux densities from 

other aqueous and soil systems reported from Borneo and other sites in SE Asia, see Table 4. The 

corresponding CH4 flux densities are higher than the CH4 flux densities reported for the Lupar and 

Saribas Rivers but much lower than the flux densities from drainage canals in Central Kalimantan and 

Sumatra (Jauhiainen and Silvennoinen, 2012) (Table 4). Our CH4 flux densities are, however, 330 

comparable to recently published CH4 eddy covariance measurements (Tang et al., 2018) in the 

Maludam National Park, which is drained by the Maludam River, and measurements of the CH4 

release from peat soils when the water table is high and CH4 from rice paddies (Couwenberg et al., 

2010), see Table 4. The mean annual N2O and CH4 emissions for the individual rivers were calculated 

by multiplying the mean flux density, F, for each river (Table 4) with the river surface area given in 335 

Table 2. The results are listed in Table 5. The resulting total annual N2O emissions for the rivers in 

NW Borneo -including the emissions from the Lupar and Saribas Rivers (Müller et al., 2016a)- are 

1.09 Gg N2O yr
-1

 (0.7 Gg N yr
-1

). This represents about 0.3 – 0.7 % of the global annual riverine and 

estuarine N2O emissions of 166 – 322 Gg N2O (106 – 205 Gg N yr
-1

) recently estimated by (Maavara 

et al., 2019). The total annual CH4 emissions from rivers in NW Borneo are 23.8 Gg CH4 yr
-1

. This 340 

represents about 0.1 – 1 % of the global riverine and estuarine CH4 emissions of 2300 – 33,400 Gg 

CH4 yr
-1

 (the emission range is based on the minimum and maximum estimates given in (Bange et al., 

1994; Bastviken et al., 2011; Borges and Abril, 2011; Stanley et al., 2016). However, we caution that 

our estimates are associated with a high degree of uncertainty because (i) our data are biased by the 

fact that for some rivers it was not possible to cover the entire salinity gradient and (ii) seasonal and 345 

internannual variabilities are not adequately represented in our data set. 

 

5 Summary and Conclusions 

 

N2O and CH4 were measured in the Rajang, Maludam, Sebuyau and Simuntan Rivers and Estuaries in 350 

NW Borneo during two campaigns in March and September 2017. The Rajang River was additionally 

sampled in August 2016 and the Samusam and Sematan Rivers were additionally sampled in March 

2017. The spatial and temporal variability of N2O and CH4 concentrations was large. N2O 

concentrations (saturations) ranged from 2.0 nmol L
-1

 (28 %) in the Rajang River (at salinity = 0 in 

August 2016) to 41.4 nmol L
-1

 (570 %) in the Simunjan River (at salinity = 0 in March 2017). CH4 355 

concentrations (saturations) were in the range from 2.5 nmol L
-1 

(106 %) in the Simunjan River (at 
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salinity = 0 in September 2017) to 1372 nmol L
-1

 (57,459 %) in the Simunjan River (at salinity = 0 in 

March 2017). N2O concentrations showed a positive linear correlation with rainfall. We conclude, 

therefore, that rainfall, which determines the N2O production/consumption in the surrounding soils, is 

the main factor determining the riverine N2O concentrations. N2O production in the ‘blackwater’ 360 

rivers themselves seems to be unlikely because of the low pH. In contrast CH4 concentrations showed 

an inverse relationship with rainfall. CH4 concentrations were highest at salinity = 0 and most 

probably results from methanogenesis as part of the decomposition of organic matter under anoxic 

conditions. We speculate that CH4 oxidation, which can be high when the water discharge is high (e.g. 

after rainfall events), is responsible for the reduction of the CH4 concentrations along the salinity 365 

gradient. The rivers and estuaries studied here were an overall net source of N2O and CH4 to the 

atmosphere. The total annual N2O and CH4 emissions were 1.09 Gg N2O yr
-1

 (0.7 Gg N yr
-1

) and 23.8 

Gg CH4 yr
-1

, respectively. This represents about 0.3 – 0.7 % of the global annual riverine and estuarine 

N2O emissions and about 0.1 – 1 % of the global riverine and estuarine CH4 emissions. Rivers and 

estuaries in NW Borneo contribute only 0.05 % (= 7.9 10
2
 km

2
 including the surface areas of the 370 

Lupar and Saribas Rivers; (Müller et al., 2016a) to the global water surface area of rivers and estuaries 

(= 1.7 10
6
 km

2
; (Maavara et al., 2019)). Therefore we conclude that rivers and estuaries in NW Borneo 

contribute significantly to the global riverine and estuarine emissions of both N2O and CH4. 

 

The environment of Borneo (and SE Asia) is affected by rapid changes due to (i) anthropogenic 375 

activities such as conversion of peatland into oil palm plantations etc. (see e.g. (Austin et al., 2018; 

McAlpine et al., 2018; Schoneveld et al., 2019)) and (ii) climatic changes (see e.g. (Sa’adi et al., 

2017a, b; Tang, 2019)) which, in turn, could significantly affect N2O and CH4 emissions from soils 

(see e.g. (Jauhiainen et al., 2016; Oktarita et al., 2017)). But little is known about how these changes 

will affect N2O and CH4 emissions from aqueous systems such as rivers and estuaries in the future. 380 

The obvious relationship of N2O and CH4 concentrations and rainfall could be used to predict future 

concentrations and its associated emissions to the atmosphere. However, the trends of rainfall and 

river discharge in Borneo show a high local variability and no general common trend (Sa’adi et al., 

2017a; Tang, 2019). Therefore, predictions of future trends of N2O and CH4 emissions will be 

associated with high degree of uncertainty. In order to improve our knowledge to predicted future 385 

changes of N2O and CH4 riverine/estuarine emissions we suggest establishing regular measurements in 

the rivers and along the salinity gradients. This will help deciphering the temporal and spatial 

variability of N2O and CH4 emissions from tropical rivers and estuaries. Moreover, studies of the 

relevant production/consumption pathways (and their main driving factors) for both gases are 

required. A suitable framework for this could be the recently published concept of the global N2O 390 

Ocean Observation Network (N2O-ON) (Bange et al., 2019). 
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8 Tables 

 

Table 1: Overview of sampling and sampled ranges of salinity, pH as well as O2 concentration and 

saturation (in %, given in parenthesis) and concentrations of dissolved inorganic nitrogen (DIN = NO3
-
 605 

+ NO2
-
 + NH4

+
), silicate (SiO2) and dissolved organic carbon (DOC). All concentrations are given in 

µmol L
-1

. na stands for not available and Stat. stands for sampling station. DOC data were taken from 

(Martin et al., 2018). 

River Date # of Stat. Range of 

   Salinity pH O2 DIN SiO2 DOC 

Rajang 20 – 27 Aug ‘16 30 0 – 32 6.5 – 8.1 85 – 153 (42 – 73) 6.7 – 29 4.0  – 179 na 

 4 – 7 Mar ’17 14 0 – 30 6.0 – 8.2 142 – 237 (58- 109) 8.1 – 18 16 – 158 96 – 201 

 5 – 14 Sept ‘17 8 0 – 18 6.9 – 8.2 164 – 227 (76 – 90) 6.7 – 14 12 – 98 na 

Maludam 9 Mar ‘17 9 0 – 20 3.7 – 7.6 34 – 213 (13 – 100) 3.9 – 10 5.8 – 32 266 – 4387 

 14/15 Sept ‘17 9 0 – 15 4.1 – 6.7 43 – 155 (17 – 74) 2.1 – 3.0 0.1 – 8.0 3072 – 3245 

Sebuyau 11 Mar ‘17 11 0 – 24 4.3 – 7.8 43 – 246 (18 – 116) 2.9 – 13 33 – 78 206 – 1968 

 15 Sept ‘17 5 0 – 10 7.2 – 7.7 65 – 179 (27 – 75) 1.1 – 13 0.9 – 44 235 – 2052 

Simunjan 12 Mar ‘17 6 0 – 0.4 4.7 – 6.3 31 – 81 (13 – 34) 2.2 – 16 73 – 114 2016 – 3039 

 17 Sept ‘17 6 0 – 4.6 4.8 – 6.7 95 – 131 (39 – 53) 2.0 – 13 1.4 – 2.6 925 – 1960 

Sematan 9 Mar ‘17 5 0 – 28 6.8 – 8.3 184 – 208 (81 – 102) 5.9 – 10 6.3 – 141 100 – 240 

Samusam 11 Mar ‘17 5 0 – 27 6.3 – 8.2 174 – 208 (72 – 102) 3.9 – 6.6 9.7 – 98 87 – 1188 
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Table 3: Overview of N2O and CH4 concentrations, saturations and flux densities in rivers and 

estuaries of NW Borneo. 

River Date N2O CH4 

  concentration 

nmol L-1 

saturation 

% 

flux density 

nmol m-2 s-1 

concentration 

nmol L-1 

saturation 

% 

flux density 

nmol m-2 s-1 

Rajang Aug ‘16 2.0 – 14.1 28 – 215 -0.33 – 0.48 13.2 – 233 719 - 9988 0.77 – 15 

 Mar ’17 5.9 – 24.0 100 – 329 0 – 1.08 11.1 – 1008 455 – 40,598 0.34 – 62 

 Sept ‘17 18.6 – 24.6 277 – 390 0.76 – 1.22 7.4 – 150 350 – 6019 0.35 – 9.05 

Maludam Mar ‘17 4.5 – 6.7 62 – 106 -0.20 – 0.03 312 – 829 12,603 – 32,988 19 – 50 

 Sept ‘17 10.8 – 20.7 150 – 331 0.23 – 1.00 3.3 – 18 163 – 717 0.09 – 0.93 

Sebuyau Mar ‘17 3.5 – 7.7 55 – 118 -0.18 – 0.08 8.4 – 1228 396 – 50,774 0.41 – 78 

 Sept ‘17 12.8 – 23.0 176 – 335 0.36 – 1.08 6.4 – 29 299 – 1285 0.28 – 1.79 

Simunjan Mar ‘17 2.5 – 41.4 35 – 570 -0.31 – 2.20 39 – 1372 

(14,999)1 

1642 – 57,459 

(624,070)1 

2.37 – 88 

 Sept ‘17 5.1 – 26.5 73 – 365 -0.13 – 1.24 2.5 – 21 106 – 878 0.01 – 1.18 

Sematan Mar ‘17 4.3 – 8.2 71 – 109 -0.11 – 0.04 8.6 – 12 433 – 47,055 0.43 – 72 

Samusam Mar ‘17 4.0 – 9.5 67 – 142 -0.13 – 0.19 16.5 – 978 830 – 43,807 0.95 – 63 

1  This extreme value was not included in further computations. 620 
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Table 5: Mean annual emissions of N2O and CH4 from rivers and estuaries in NW Borneo. The data 

from Lupar and Saribas Rivers are from (Müller et al., 2016a). 625 

River Emissions 

 Gg N2O yr-1 Gg CH4 yr-1 

Rajang 0.33 1.27 

Maludam 0.20 3.65 

Sebuyau 0.24 3.53 

Simunjan 0.32 4.30 

Sematan -0.03 5.99 

Samusam 0.03 4.99 

Lupar 0.01 0.08 

Saribas 0.01 0.04 

Sum 1.09 23.8 
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Figure Captions 

Figure 1: Map of the study area with locations of the sampling stations. Sampling stations from 

August 2016 are displayed in red circles, from March 2017 in blue triangles, and from September 630 

2017 in green diamonds. Major cities are highlighted in bold plus symbols. Inset is adapted from 

(Staub et al., 2000). 

Figure 2: N2O saturations along the salinity gradients of (a) Rajang, (b) Maludam, (c) Sebuyau, (d) 

Simutan, (d) Sematan and (e) Samusam. The dashed lines indicate the equilibrium (100%) saturation. 

The open cycles depict measurements from August 2016, the filled red cylces depict measurements 635 

from March 2017 and the filled blue cycles depict measurements from September 2017. 

Figure 3: CH4 saturations along the salinity gradients of (a) Rajang, (b) Maludam, (c) Sebuyau, (d) 

Simutan, (d) Sematan and (e) Samusam. The dashed lines indicate the equilibrium (100%) saturation. 

The open cycles depict measurements from August 2016, the filled red cycles depict measurements 

from March 2017 and the filled blue cycles depict measurements from September 2017. 640 

Figure 4: (a) Mean N2O and (b) mean CH4 concentrations for the individual rivers vs. the mean 

monthly rainfall amount during the month of the sampling. We also included the mean N2O and CH4 

concentration for the Lupar, Saribas Rivers and Saribas tributary from (Müller et al., 2016a). The 

linear correlation in (a) is described by y = 0.08x + 5.76 (r = 0.72, n = 17, significant at the 99% level). 

The linear correlation in (b) is described by y = -9.57x + 713.15 (r = 0.88, n = 13, significant at the 645 

99% level; please note that the encircled data were not included in the correlation). 
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6 Figures 650 

 

Figure 1.  
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Figure 2.  655 
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Figure 3.  
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Figure 4 
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