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Abstract

Nitrous oxide (N,O) and methane (CHy,) are atmospheric trace gases which play important roles of the
climate and atmospheric chemistry of the Earth. However, little is known about their emissions from
rivers and estuaries which seem to contribute significantly to the atmospheric budget of both gases. To
this end concentrations of N,O and CH, were measured in the Rajang, Maludam, Sebuyau and
Simunjan Rivers draining peatland in northwestern (NW) Borneo during two campaigns in March and
September 2017. The Rajang River was additionally sampled in August 2016 and the Samusam and
Sematan Rivers were additionally sampled in March 2017. The Maludam, Sebuyau, and Simunjan
Rivers are typical ‘blackwater’ rivers with very low pH, very high dissolved organic carbon (DOC)
concentrations and very low O, concentrations. The spatial and temporal variability of N,O and CH,
concentrations (saturations) in the six rivers/estuaries was large and ranged from 2.0 nmol L™ (28 %)
to 41.4 nmol L™ (570 %) and from 2.5 nmol L™ (106 %) to 1372 nmol L™ (57,459 %), respectively.
We found no overall trends of N,O with O, or NO3", NO,", NH," and there were no trends of CH, with
O, or dissolved nutrients or DOC. N,O concentrations showed a positive linear correlation with
rainfall. We conclude, therefore, that rainfall is the main factor determining the riverine N,O
concentrations since N,O production/consumption in the ‘blackwater’ rivers themselves seems to be
unlikely because of the low pH. In contrast CH, concentrations showed an inverse relationship with
rainfall. CH, concentrations were highest at salinity = 0 and most probably result from
methanogenesis as part of the decomposition of organic matter under anoxic conditions. We speculate
that CH, oxidation, which can be high when the water discharge is high (e.g. after rainfall events), is
responsible for the decrease of the CH, concentrations along the salinity gradients. The rivers and
estuaries studied here were an overall net source of N,O and CH, to the atmosphere. The total annual
N,O and CH, emissions were 1.09 Gg N,O yr* (0.7 Gg N yr) and 23.8 Gg CH, yr™, respectively.
This represents about 0.3 — 0.7 % of the global annual riverine and estuarine N,O emissions and about
0.1 - 1 % of the global riverine and estuarine CH, emissions. Therefore, we conclude that rivers and
estuaries in NW Borneo —despite the fact their water area covers only 0.05 % of the global
river/estuarine area— contribute significantly to global riverine and estuarine emissions of N,O and
CH,.
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1. Introduction

Nitrous oxide (N,O) and methane (CH,) are atmospheric trace gases which influence the climate and
atmospheric chemistry of the Earth (IPCC, 2013; WMO, 2014). They act as greenhouse gases in the
troposphere and are indirectly involved in stratospheric ozone depletion. Emission estimates indicate
that rivers and estuaries contribute significantly to the atmospheric budget of both N,O and CH,4. N,O
emissions estimate for rivers and estuaries range from 0.05 to 3.3 Tg N,O yr* and from 0.09 t0 5.7 Tg
N,O yr?, respectively (see overview in (Maavara et al., 2019). Thus, the combined riverine and
estuarine emissions may contribute up to 32 % to the global natural and anthropogenic emissions of
N,O (28.1 Tg N,O yr*; IPCC, 2013). CH, emission estimates for rivers and estuaries are in the range
of 1.5 - 26.8 Tg CH, yr* (Bastviken et al., 2011; Stanley et al., 2016) and 0.8 — 6.6 Tg CH, yr™ (see
overview in (Borges and Abril, 2011)), respectively. The combined emissions from rivers and
estuaries can contribute up to 6% of the global natural and anthropogenic atmospheric emissions of
CH, (556 Tg CH, yr; (IPCC, 2013)). As indicated by the wide range of the estimates cited above, the
emission estimates of both gases are associated with a high degree of uncertainty, which is mainly
caused by an inadequate coverage of the temporal and spatial distributions of N,O and CH, in rivers
and estuaries and the inherent errors of the model approaches to estimate their release across the

water/atmosphere interface (see e.g. (Alin et al., 2011; Borges and Abril, 2011)).

N,O is produced by microbial processes such as nitrification (i.e. oxidation of ammonia, NH3, to
nitrite, NO,") in estuarine waters (see e.g. (Barnes and Upstill-Goddard, 2011)) and heterotrophic
denitrification (i.e. reduction of nitrate, NOj3’, to dinitrogen, N,) in river sediments (Beaulieu et al.,
2011). The yields of N,O from these processes are enhanced under low oxygen (i.e. suboxic)
conditions (see e.g. (Brase et al., 2017; Zhang et al., 2010)), whereas N,O can be reduced to N, under
anoxic conditions via sedimentary denitrification in rivers (see e.g. (Upstill-Goddard et al., 2017)).
Apart from ambient oxygen (O,) concentrations, riverine and estuarine N,O production is also
dependent on the concentrations of dissolved inorganic nitrogen, DIN (= NH," + NO,. + NO3). There
seems to be a general trend towards high estuarine N,O concentrations when DIN concentrations are
high as well (Barnes and Upstill-Goddard, 2011; Zhang et al., 2010). However, this trend masks the
fact that in many cases the spatial and temporal variability of riverine and estuarine N,O is often not
related to DIN (see e.g. (Borges et al., 2015; Brase et al., 2017; Miller et al., 2016a)).

CH, is produced during microbial respiration of organic matter by anaerobic methanogenesis in
riverine and estuarine sediments (see e.g. (Borges and Abril, 2011; Romeijn et al., 2019; Stanley et al.,
2016)). A significant fraction of the CH, produced in sediments can be oxidized to carbon dioxide
(COy) via anaerobic CH, oxidation in sulphate-reducing zones of estuarine sediments (see e.g. (Maltby
et al., 2018)). When released to the overlying riverine/estuarine water CH, can be oxidized by aerobic

3
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CH, oxidation before reaching the atmosphere (see e.g. (Borges and Abril, 2011; Sawakuchi et al.,
2016; Steinle et al., 2017)).

In general, the temporal and spatial distributions of N,O and CHy, in rivers and estuaries are driven by
the complex interplay of microbial production and consumption pathways (see above) as well as
physical processes such as input via shallow groundwater, river discharge, tidal pumping, release to
the atmosphere and export to coastal waters (Barnes and Upstill-Goddard, 2011; Borges and Abril,
2011; Stanley et al., 2016).

Peatlands, which are found in the tropics and at high latitudes, constitute one of the largest reservoirs
of organic-bound carbon worldwide (Page et al., 2011; Treat et al., 2019; Yu et al., 2010). Rivers and
streams draining peatlands have exceptionally high concentrations of dissolved organic carbon (DOC)
and low pH and, thus, belong to the ‘blackwater’ river type which is also found in southeast (SE) Asia
(Alkhatib et al., 2007; Baum et al., 2007; Martin et al., 2018; Moore et al., 2011; Rixen et al., 2008;
Wit et al., 2015)..

Despite the fact that a number of studies about N,O and CH, emissions from peatlands in southeast
(SE) Asia have been published (see e.g. (Couwenberg et al., 2010; Hatano et al., 2016; Jauhiainen et
al., 2012), only a few studies about their emissions from peatland draining rivers in SE Asia have been
published so far (Jauhiainen and Silvennoinen, 2012; Maller et al., 2016a). Therefore, our knowledge
about the biogeochemistry and emissions of N,O and CH, from peatland draining rivers is still
rudimentary at best.

Here we present measurements of dissolved N,O and CHj in six rivers and their estuaries in
northwestern (NW) Borneo during August 2016, March 2017 and September 2017. The objectives of
our study were (i) to measure the distributions of dissolved N,O and CH,, (ii) to identify the major
factors influencing their distributions and (iii) to estimate the N,O and CH, emissions to the

atmosphere.

2. Study site description

Discrete samples of surface water were taken at several stations along the salinity gradients of the
Rajang, Maludam, Sebuyau and Simunjan Rivers in NW Borneo during two campaigns in March and
September 2017 (Figure 1, Table 1). The Rajang River was additionally sampled in August 2016 and
the Samusam and Sematan Rivers were additionally sampled in March 2017. The environmental
settings of the river basins are summarized in Table 2. Based on the areas affected by oil palm

plantations and logging in combination with our own observations during several samplings
4



https://doi.org/10.5194/bg-2019-222
Preprint. Discussion started: 11 June 2019
(© Author(s) 2019. CC BY 4.0 License.

135

140

145

150

155

160

165

170

campaigns, we classified the Rajang and Simunjan river basins as ‘disturbed’, the Maludam, Sebuyau,

Sematan and Samusam river basins as ‘undisturbed’ (Table 2).

3. Methods

3.1 Measurements of N,O and CH,

Discrete water samples were taken as duplicates or triplicates in 20 or 37 mL glass vials from a water
depth of approximately 1 m. The samples were poisoned immediately after sampling with a saturated
aqueous mercuric chloride (HgCl,) solution. The samples were shipped to GEOMAR Helmholtz
Centre for Ocean Research Kiel, Germany, for further analysis within a few weeks after sampling. For
the determination of the N,O and CH, concentrations we applied the static-headspace equilibration
method followed by gas chromatographic separation and detection with an electron capture detector
(ECD, for N,0O) and a flame ionization detector (FID, for CH,) as described in (Bastian, 2017) and
(Kallert, 2017). Calibration of the ECD and FID were performed with standard gas mixtures of N,O

and CH, in synthetic air which have been calibrated against NOAA-certified primary gas standards.

Dissolved N,O/CH, concentrations (Cqps in nmol L’l) were calculated with

Cops = X "PVys ! (RTpr) +x’pP D,

where x” is the dry mole fraction of N,O or CH, in the headspace of the sample, P is the ambient
pressure (set to 1013.25 hPa), Vs and V,,, are the volumes of the headspace and the water phase,
respectively. R stands for the gas constant (8.31451 m® Pa K> mol™), T is the temperature during
equilibration and g is the solubility of N,O or CH, (Weiss and Price, 1980; Wiesenburg and Guinasso
Jr., 1979). The estimated mean relative errors of the measurements were +/- 9 % and +/- 13 % for N,O
and CH,, respectively. These comparably high relative errors most probably resulted from the long
storage time for some of the samples. It was shown that CH, samples are more sensitive to storage
time than N,O samples (Wilson et al., 2018).

3.2 Ancillary measurements

Water temperature, dissolved oxygen, and salinity were recorded with an Aquaread® 2000. Nutrient
measurements are described in detail in (Sia et al., 2019). In short, all samples were collected within
the upper 1 m (surface) using pre-washed bottles via a pole-sampler to reduce contamination from the
surface of the boat and engine coolant waters (Zhang et al., 2015). Samples were filtered through a 0.4
um pore-size polycarbonate membrane filters (Whatman) into pre-rinsed bottles, killed with

concentrated HgCl, solution and kept in a cool, dark room. Nutrients were determined utilizing a

5
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Skalar SANplus auto analyser with an analytical precision <5%. The measurements of dissolved
organic carbon (DOC) are described in detail in (Martin et al., 2018). The DOC data are available
from the supplementary material in (Martin et al., 2018).

3.3 Computations of saturations and flux densities

The saturations (Sat, %) for N,O, CH, and O, were calculated as

Sat = 100 Cops / Ceq @

where Ceq is the equilibrium concentration of N,O/CH,/O, calculated according to (Weiss and Price,
1980), (Wiesenburg and Guinasso Jr., 1979) or (Weiss, 1970), respectively, with the in-situ
temperature and salinity as well as the mean dry mole fractions of N,O/CH, at the time of the
sampling. Mean monthly N,O/CH, dry mole fractions of 329/1841 10 (ppb), 331/1880 ppb and
330/1852 ppb for August 2016, March 2017 and September 2017, respectively, were measured at the
atmospheric monitoring station Bukit Kototabang, located on the west coast of Sumatra (Indonesia).
This station is operated by the NOAA/ESRL Global Monitoring Division program and data are
available from http://www.esrl.noaa.gov/gmd. A saturation < 100 % indicates a concentration lower
than the theoretical equilibrium concentration (i.e. undersaturation) and a saturation > 100 % indicates

supersaturation.

Flux densities (F, nmol-m?.s™) were calculated as

F=ky (Cobs - Ceq) (3)
K = Koo (S¢/600)°° (4)

kw is the gas transfer velocity and Sc is the Schmidt number, which was calculated with the equations
for the kinematic viscosity of water (Siedler and Peters, 1986) and the diffusion of N,O or CH, in
water (J&hne et al., 1987; Rhee et al., 2009). kspo Was determined in a seasonal study for the Lupur and
Saribas Rivers which are located in close vicinity to the Maludam River (Muller et al., 2016a; Muller
et al., 2016b). We assume that the kg values measured by (Mdiller et al., 2016a)are representative for
the rivers in NW Borneo studied here. Mean keo range from 13.2 cm h™* (Lupur River) to 23.9cm h
(Saribas River tributary). On the basis of the data in (Miller et al., 2016a) we computed a mean Kgoo Of
19.2 cm h™* (5.33 10° m s™) which we used to estimate the flux densities of N,O and CH,. This ke is
in good agreement with the mean kgoo for rivers and estuaries listed in (Alin et al., 2011) which range
from4.8t0353cmh™.

3.4 Rainfall data
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In order to account for the regional variability of the rainfall in NW Borneo, we used mean monthly
rainfall data recorded at the weather stations in Kuching, Bandar Sri Aman and Sibu (all in NW
Borneo). The rainfall data were provided by World Weather Online (Dubai, UAE, and Manchester,
UK) and are available via https://www.worldweatheronline.com/. Representative weather stations

were chosen for each river basin studied here and allocated as follows: The rainfall data for the
Simunjan, Sematan and Samsuman River basins are represented by the data from Kuching, the
Maludam/Sebuyau and the Rajang River basins are represented by the data from the Bandar Sri Aman

and Sibu weather stations, respectively.

4 Results and Discussion

All rivers showed low concentrations of DIN in the range from 1.1 to 29 pmol L™ (Table 1). NOy
concentrations ranged from below the detection limit of 0.14 umol L™ up to 19 pumol L™ and NH,*
concentrations were in the range of 0.3 to 17 umol L™. The Maludam, Sebuyau, and Simunjan Rivers
can be classified as ‘blackwater” rivers with low pH (3.7 — 4.8), high DOC concentrations (1960 —
4387 pmol L™) and low O, concentrations (31 — 95 pmol L™; 13 — 39 % saturation) at salinity = 0
(Table 1). Comparable settings have been reported from other tropical ‘blackwater’ rivers in SE Asia
as well (Alkhatib et al., 2007; Baum et al., 2007; Moore et al., 2011; Rixen et al., 2008; Wit et al.,
2015).

4.1 Nitrous oxide

The measured ranges of N,O concentrations and saturations are listed in Table 3 and the distributions
of N,O saturations along the salinity gradients are shown in Figure 2. N,O concentrations (saturations)
were highly variable and ranged from 2.0 nmol L™ (28 %) in the Rajang River (at salinity = 0 in
August 2016) to 41.4 nmol L™ (570 %) in the Simunjan River (at salinity = 0 in March 2017). N,O
concentrations in the Rajang, Maludam and Sebuyau Rivers were generally higher in September 2017
compared to March 2017 (Figure 2a-c). A decreasing linear trend of the N,O saturations with salinity
was only observed for the Rajang River in March 2017 (Figure 2a) indicating a conservative mixing
and no N,O sources or sinks along the salinity gradient. Our results are in general agreement with the
N,O measurements in the Lupar and Saribas Rivers (which are located in close vicinity of the
Maludam River) in June 2013 and March 2014: Muller et al. (2016) measured N,O concentrations
(saturations) from 6.6 to 117 nmol L™ (102 to 1679 %) in the Lupar and Saribas Rivers. Salinity and
N,O concentrations in the Lupar and Saribas Rivers were negatively correlated in June 2013 but were
not correlated in March 2014 (Mdiller et al., 2016a). In contrast to our study, no N,O undersaturations
have been observed by (Mdiller et al., 2016a). Our results are at the lower end of N,O concentrations
reported from rivers around the globe which can range from extreme undersaturation (down to about 3
%, i.e. almost devoid of N,O) as measured in a tropical river in Africa (Borges et al., 2015; Upstill-

7
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Goddard et al., 2017) to extreme supersaturation (of up to 6500%) as measured in a river in Europe
((Barnes and Upstill-Goddard, 2011).

Maximum N,O saturations measured in March 2017 were in the range from 106 % to 142 % for the
rivers classified as undisturbed (Maludam, Sebuyau, Sematan and Samusam) whereas the maximum
saturation for the rivers classified as disturbed (Rajang and Simunjan) were in the range from 329 % to
570 % (Tables 2 and 3) indicating higher emissions from the disturbed rivers. The maximum N,O
saturations in September 2017 ranged from 329 % to 390 % and no differences were observed

between undisturbed and disturbed rivers (Table 3).

We found no overall trends of N,O with O, or NO5', NO,", NH," and DIN. Therefore, it is difficult to
decipher the major consumption or production processes of N,O or to locate the influence of (local)
anthropogenic input of nitrogen compounds on riverine N,O cycling. This is in line with results from
studies of other tropical rivers (Borges et al., 2015; Muller et al., 2016a). N,O production via
nitrification depends on the prevailing pH because nitrifiers prefer to take up ammonia (NH3). The
concentration of dissolved NHjs is dropping significantly at pH < 8-9 (Bange, 2008) because of its easy
protonation to ammonium (NH,"). A low pH of about 5-6 can reduce nitrification (NH," oxidation)
significantly as it was recently shown for the Tay Ninh River in Vietnam (Le et al., 2019). Moreover,
the optimum for a net N,O production by nitrification, nitrifier-denitrification and denitrification lies
between a pH of 7 — 7.5 (Blum et al., 2018). Therefore, a net N,O production may be unlikely in the
‘blackwater’ rivers studied here with their low pH (see Table 1). The observed N,O supersaturations,
therefore, might have been the result of external inputs of N,O-enriched waters or groundwater. The
observed N,O undersaturations were most probably resulting from heterotrophic denitrification which
could have taken place either in organic matter-enriched anoxic river sediments or in anoxic
environments of the surrounding soils. However, the main factor for riverine N,O under- or
supersaturation might be rainfall, because rainfall events determine the height of the water table in the
surrounding soils, which in turn determines the amount of suboxic/anoxic conditions favourable for

NO production or consumption. See also discussion in Section 4.3.

4.2 Methane

The measured ranges of CH, concentrations and saturations are listed in Table 3 and the distributions
of CH, saturations along the salinity gradients are shown in Figure 3. CH, concentrations (saturations)
were highly variable and ranged from 2.5 nmol L™ (106 %) in the Simunjan River (at salinity = 0 in
September 2017) to 1372 nmol L™ (57,459 %) in the Simunjan River (at salinity = 0 in March 2017).
(Please note that we also measured a CH, concentration of 14,999 nmol L™ (624,070 %) at one station
in the Simunjan River at salinity = 0 in March 2017 which, however, was not included in Figure 3 and
which was not used in further computations because of statistical reasons.) CH, saturations in the

8
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Rajang, Maludam, Sebuyau and Simunjan Rivers were higher in March 2017 compared to September
2017. Maximum CH, concentrations were measured at salinity = 0 and there was a general decrease of
CH, with increasing salinity. Exceptions from this trend occurred at individual stations in the
Maludam, Sebuyau and Samusam Rivers which point to local sources of CH, (Figure 3). The range of
CH, concentrations (saturations) from our study is larger compared to the concentration range
measured in the Lupar and Saribas Rivers (3.7 — 113.9 nmol L™; 168 — 5058 %) ((Mdlller et al.,
2016a). (Borges et al., 2015) reported a maximum CH, concentration (saturation) of 62,966 nmol L™
(appr. 954,000 %) in their study of tropical rivers in Africa which is much higher than the maximum

concentration measured in our study. (Bouillon et al., 2014)

We found no overall trends of CH, with O, or dissolved nutrients or DOC along the salinity gradients.
High CH, concentrations, which were often associated with high DOC and low O, concentrations at
salinity = 0, might have been produced by methanogenesis in anoxic riverine sediments rich in organic
material or in anoxic parts of the surrounding soils drained by the rivers. The decrease of CH, with
increasing salinity can be attributed to the gas exchange across the river water/atmosphere interface in
combination with CH, oxidation (Borges and Abril, 2011; Sawakuchi et al., 2016).

We found no differences in the CH, saturations between the rivers classified as undisturbed and those
classified as disturbed in both March and September 2017.

4.3 N,O/CH, concentrations and rainfall

Mean N,O concentrations showed a linear correlation with rain fall (Figure 4a). Enhanced N,O
emissions from (peat) soils are usually associated with rainfall when the water table approaches the
soil surface (Couwenberg et al., 2010; Jauhiainen et al., 2016). A high water table, in turn, allows
decomposition of previously deposited fresh organic material (Jauhiainen et al., 2016) and, thus, will
result in favourable conditions for microbial N,O production mainly via denitrification in a
suboxic/anoxic soil environment (Pihlatie et al., 2004). N,O production via nitrification may be less
important at high water table (Pihlatie et al., 2004). Therefore, the positive linear relationship of the
riverine N,O concentrations with rainfall might result from enhanced N,O production in the adjacent

soils drained by the rivers.

In contrast to N,O, the mean CH,4 concentrations decrease with increasing rainfall (Figure 4b). Under
the assumption that rainfall is a predictor for river discharge/high water we can argue that our result
are in agreement with (i) the often observed inverse relationship between CH, concentrations and river
discharge (Anthony et al., 2012; Bouillon et al., 2014; Dinsmore et al., 2013; Hope et al., 2001) and
(ii) the enhancement of CH, oxidation during high waters: (Sawakuchi et al., 2016) showed that CH,

oxidation in ‘blackwater’ rivers of the Amazon basin was maximal during the high water season

9
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resulting in a reduction of up to 96% of the diffusive flux of CH, (i.e. its input to the river and its
release to the atmosphere) (Sawakuchi et al., 2016). This was explained by the higher river water
levels which, in turn, could enhance CH, oxidation because of a longer residence time of CH, in the
sediment and river water (Sawakuchi et al., 2016).

4.4 Emission estimates

The N,O flux densities from the six rivers studied here are comparable to the N,O flux densities from
other aqueous and soil systems reported from Borneo and other sites in SE Asia, see Table 4. The
corresponding CH, flux densities are higher than the CH, flux densities reported for the Lupar and
Saribas Rivers but much lower than the flux densities from drainage canals in Central Kalimantan and
Sumatra (Jauhiainen and Silvennoinen, 2012) (Table 4). Our CH, flux densities are, however,
comparable to recently published CH, eddy covariance measurements (Tang et al., 2018) in the
Maludam National Park, which is drained by the Maludam River, and measurements of the CH,
release from peat soils when the water table is high and CH, from rice paddies (Couwenberg et al.,
2010), see Table 4. The mean annual N,O and CH, emissions for the individual rivers were calculated
by multiplying the mean flux density, F, for each river (Table 4) with the river surface area given in
Table 2. The results are listed in Table 5. The resulting total annual N,O emissions for the rivers in
NW Borneo -including the emissions from the Lupar and Saribas Rivers (Muller et al., 2016a)- are
1.09 Gg N,O yr (0.7 Gg N yr). This represents about 0.3 — 0.7 % of the global annual riverine and
estuarine N,O emissions of 166 — 322 Gg N,O (106 — 205 Gg N yr™) recently estimated by (Maavara
et al., 2019). The total annual CH, emissions from rivers in NW Borneo are 23.8 Gg CH, yr'l. This
represents about 0.1 — 1 % of the global riverine and estuarine CH, emissions of 2300 — 33,400 Gg
CH, yr™ (the emission range is based on the minimum and maximum estimates given in (Bange et al.,
1994; Bastviken et al., 2011; Borges and Abril, 2011; Stanley et al., 2016). However, we caution that
our estimates are associated with a high degree of uncertainty because (i) our data are biased by the
fact that for some rivers it was not possible to cover the entire salinity gradient and (ii) seasonal and

internannual variabilities are not adequately represented in our data set.

5 Summary and Conclusions

N,O and CH, were measured in the Rajang, Maludam, Sebuyau and Simuntan Rivers and Estuaries in
NW Borneo during two campaigns in March and September 2017. The Rajang River was additionally
sampled in August 2016 and the Samusam and Sematan Rivers were additionally sampled in March
2017. The spatial and temporal variability of N,O and CH, concentrations was large. N,O
concentrations (saturations) ranged from 2.0 nmol L™ (28 %) in the Rajang River (at salinity = 0 in
August 2016) to 41.4 nmol L™ (570 %) in the Simunjan River (at salinity = 0 in March 2017). CH,
concentrations (saturations) were in the range from 2.5 nmol L™ (106 %) in the Simunjan River (at

10
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salinity = 0 in September 2017) to 1372 nmol L™ (57,459 %) in the Simunjan River (at salinity = 0 in
March 2017). N,O concentrations showed a positive linear correlation with rainfall. We conclude,
therefore, that rainfall, which determines the N,O production/consumption in the surrounding soils, is
the main factor determining the riverine N,O concentrations. N,O production in the ‘blackwater’
rivers themselves seems to be unlikely because of the low pH. In contrast CH, concentrations showed
an inverse relationship with rainfall. CH, concentrations were highest at salinity = 0 and most
probably results from methanogenesis as part of the decomposition of organic matter under anoxic
conditions. We speculate that CH, oxidation, which can be high when the water discharge is high (e.g.
after rainfall events), is responsible for the reduction of the CH, concentrations along the salinity
gradient. The rivers and estuaries studied here were an overall net source of N,O and CH, to the
atmosphere. The total annual N,O and CH, emissions were 1.09 Gg N,O yr* (0.7 Gg N yr') and 23.8
Gg CH, yr?, respectively. This represents about 0.3 — 0.7 % of the global annual riverine and estuarine
N,O emissions and about 0.1 — 1 % of the global riverine and estuarine CH, emissions. Rivers and
estuaries in NW Borneo contribute only 0.05 % (= 7.9 10 km? including the surface areas of the
Lupar and Saribas Rivers; (Muller et al., 2016a) to the global water surface area of rivers and estuaries
(= 1.7 10° km?; (Maavara et al., 2019)). Therefore we conclude that rivers and estuaries in NW Borneo

contribute significantly to the global riverine and estuarine emissions of both N,O and CH,.

The environment of Borneo (and SE Asia) is affected by rapid changes due to (i) anthropogenic
activities such as conversion of peatland into oil palm plantations etc. (see e.g. (Austin et al., 2018;
McAlpine et al., 2018; Schoneveld et al., 2019)) and (ii) climatic changes (see e.g. (Sa’adi et al.,
2017a, b; Tang, 2019)) which, in turn, could significantly affect N,O and CH, emissions from soils
(see e.g. (Jauhiainen et al., 2016; Oktarita et al., 2017)). But little is known about how these changes
will affect N,O and CH, emissions from aqueous systems such as rivers and estuaries in the future.
The obvious relationship of N,O and CH, concentrations and rainfall could be used to predict future
concentrations and its associated emissions to the atmosphere. However, the trends of rainfall and
river discharge in Borneo show a high local variability and no general common trend (Sa’adi et al.,
2017a; Tang, 2019). Therefore, predictions of future trends of N,O and CH, emissions will be
associated with high degree of uncertainty. In order to improve our knowledge to predicted future
changes of N,O and CH, riverine/estuarine emissions we suggest establishing regular measurements in
the rivers and along the salinity gradients. This will help deciphering the temporal and spatial
variability of N,O and CH, emissions from tropical rivers and estuaries. Moreover, studies of the
relevant production/consumption pathways (and their main driving factors) for both gases are
required. A suitable framework for this could be the recently published concept of the global N,O
Ocean Observation Network (N20-ON) (Bange et al., 2019).
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8 Tables

Table 1: Overview of sampling and sampled ranges of salinity, pH as well as O, concentration and

605  saturation (in %, given in parenthesis) and concentrations of dissolved inorganic nitrogen (DIN = NO3

+NO, + NH,"), silicate (SiO,) and dissolved organic carbon (DOC). All concentrations are given in

umol L. na stands for not available and Stat. stands for sampling station. DOC data were taken from

(Martin et al., 2018).

River Date # of Stat. Range of
Salinity pH 0, DIN Sio, DOC
Rajang 20— 27 Aug ‘16 30 0-32 6.5-8.1 85— 153 (42 - 73) 6.7-29 4.0 -179 na
4 -7 Mar ’17 14 0-30 6.0-8.2 142 - 237 (58-109) 8.1-18 16 — 158 96 — 201
5—14 Sept ‘17 8 0-18 6.9-8.2 164 -227 (76 -90) 6.7-14 12-98 na
Maludam 9 Mar ‘17 9 0-20 37-76 34-213(13-100) 39-10 58-32 266-4387
14/15 Sept ‘17 9 0-15 41-6.7 43-155(17-74) 21-3.0 0.1-80 3072-3245
Sebuyau 11 Mar 17 11 0-24 43-78 43-246(18-116) 29-13 33-78 2061968
15 Sept ‘17 5 0-10 72-77 65179 (27 - 75) 11-13 09-44  235-2052
Simunjan 12 Mar ‘17 6 0-04 47-63 31-81(13-34) 22-16 73-114 2016 - 3039
17 Sept ‘17 6 0-46 48-6.7 95— 131 (39 - 53) 20-13 14-26 925-1960
Sematan 9 Mar ‘17 5 0-28 6.8-8.3 184-208(81-102) 59-10 6.3-141 100-240
Samusam 11 Mar 17 5 0-27 63-82 174-208(72-102) 39-6.6 9.7-98  87-1188
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620

Table 3: Overview of N,O and CH, concentrations, saturations and flux densities in rivers and

estuaries of NW Borneo.

River Date N,O CH,
concentration saturation flux density ~ concentration saturation flux density
nmol L™ % nmol m2 s nmol L™ % nmol m?s*
Rajang Aug ‘16 2.0-14.1 28 - 215 -0.33-0.48 13.2-233 719 - 9988 0.77-15
Mar’17 59 -24.0 100 - 329 0-1.08 11.1-1008  455-40,598 0.34-62
Sept ‘17 18.6—24.6 277 -390 0.76 —1.22 7.4-150 350 - 6019 0.35-9.05
Maludam Mar ‘17 45-6.7 62 — 106 -0.20-0.03 312-829 12,603 — 32,988 19-50
Sept ‘17 10.8-20.7 150 - 331 0.23-1.00 3.3-18 163 - 717 0.09-0.93
Sebuyau Mar ‘17 35-7.7 55-118 -0.18 - 0.08 8.4 1228 396 - 50,774 0.41-78
Sept ‘17 12.8-23.0 176 - 335 0.36 —1.08 6.4-29 299 - 1285 0.28 -1.79
Simunjan Mar ‘17 25-414 35-570 -0.31-2.20 39-1372 1642 — 57,459 2.37-88
(14,999) (624,070)*
Sept ‘17  5.1-26.5 73 -365 -0.13-1.24 25-21 106 — 878 0.01-1.18
Sematan Mar ‘17  43-82 71-109 -0.11-0.04 8.6-12 433 - 47,055 0.43-72
Samusam Mar ‘17  4.0-95 67 — 142 -0.13-0.19 16.5-978 830 - 43,807 0.95-63

T This extreme value was not included in further computations.
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Table 5: Mean annual emissions of N,O and CH, from rivers and estuaries in NW Borneo. The data

625  from Lupar and Saribas Rivers are from (Muller et al., 2016a).

River Emissions
Gg N,O yrt Gg CH, yr!

Rajang 0.33 1.27
Maludam 0.20 3.65
Sebuyau 0.24 3.53
Simunjan 0.32 4.30
Sematan -0.03 5.99
Samusam 0.03 4.99
Lupar 0.01 0.08
Saribas 0.01 0.04
Sum 1.09 23.8
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Figure Captions

Figure 1: Map of the study area with locations of the sampling stations. Sampling stations from

630  August 2016 are displayed in red circles, from March 2017 in blue triangles, and from September
2017 in green diamonds. Major cities are highlighted in bold plus symbols. Inset is adapted from
(Staub et al., 2000).

Figure 2: N,O saturations along the salinity gradients of (a) Rajang, (b) Maludam, (c) Sebuyau, (d)
Simutan, (d) Sematan and (e) Samusam. The dashed lines indicate the equilibrium (100%) saturation.
635  The open cycles depict measurements from August 2016, the filled red cylces depict measurements

from March 2017 and the filled blue cycles depict measurements from September 2017.

Figure 3: CH, saturations along the salinity gradients of (a) Rajang, (b) Maludam, (c) Sebuyau, (d)

Simutan, (d) Sematan and (¢) Samusam. The dashed lines indicate the equilibrium (100%) saturation.

The open cycles depict measurements from August 2016, the filled red cycles depict measurements
640  from March 2017 and the filled blue cycles depict measurements from September 2017.

Figure 4: (a) Mean N,O and (b) mean CH,4 concentrations for the individual rivers vs. the mean
monthly rainfall amount during the month of the sampling. We also included the mean N,O and CH,
concentration for the Lupar, Saribas Rivers and Saribas tributary from (Muller et al., 2016a). The
linear correlation in (a) is described by y = 0.08x + 5.76 (r = 0.72, n = 17, significant at the 99% level).

645  The linear correlation in (b) is described by y = -9.57x + 713.15 (r = 0.88, n = 13, significant at the
99% level; please note that the encircled data were not included in the correlation).
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